Fetal growth restriction induced by chronic placental insufficiency has long-term effects on the retina but not the optic nerve.
نویسندگان
چکیده
PURPOSE Reduced birth weight is associated with an increased risk of visual impairments. This study was undertaken to determine whether prenatal exposure to a chronic compromise sufficient to cause fetal growth restriction (FGR) results in long-term alterations to the retina and optic nerve. METHODS FGR was induced by umbilicoplacental embolization (UPE) in two cohorts of pregnant ewes from (1) 120 days of gestation (dg) until 140 dg and (2) 120 dg until term ( approximately 147 dg). Control fetuses were not subjected to UPE. The structure and neurochemistry of the retina and number and structure of ganglion cell axons were assessed in near-term (140 dg) and adult animals (2.3 years). RESULTS In near-term FGR fetuses compared with control fetuses there were significant reductions (P < 0.05) in the outer plexiform layer (OPL), the photoreceptor inner and outer segment layers, the inner nuclear layer (INL) in the central retina and the outer nuclear layer (ONL) in the peripheral retina, and the diameter of ganglion cell axons in the optic nerve, with a proportional reduction in the thickness of myelin sheaths. In FGR animals compared with the control at 2.3 years, there were significant reductions (P < 0.05) in the total thickness of the retina, the thickness of the photoreceptor outer segment layer and the INL and the number of tyrosine hydroxylase-immunoreactive (TH-IR) dopaminergic amacrine cells. Axonal diameter and myelin sheath thickness in the optic nerve were not different (P > 0.05) between groups. CONCLUSIONS Chronic placental insufficiency in late gestation results in long-lasting effects on specific retinal components, including photoreceptor outer segments and TH-IR amacrine cells. Other alterations observed at term, including reductions in growth and myelination of optic nerve axons, do not persist, suggesting delayed rather than permanently compromised development. Alterations persisting into adulthood could affect visual function.
منابع مشابه
Chronic hypoxemia: effects on developing nitrergic and dopaminergic amacrine cells.
PURPOSE Very low birth weight and growth-restricted children have visual impairments including reduced contrast sensitivity, a parameter mediated in part by dopaminergic amacrine cells. The origin of these deficits is uncertain. In experimental fetal growth restriction, induced by placental insufficiency, the morphology and number of dopaminergic amacrine cells as identified by tyrosine hydroxy...
متن کاملI-46: Obstetrical Doppler
Accurate assessment of gestational age, fetal growth, and the detection of fetal and placental abnormalities are major benefits of sonography. Color Doppler can be used to assist in the identification of vascular architecture, detection of vascular pathology and visualization of blood flow changes associated with physiologic processes and disease states. The clinical applications of obstetrical...
متن کاملRestriction of placental function alters heart development in the sheep fetus.
Placental insufficiency, resulting in restriction of fetal substrate supply, is a major cause of intrauterine growth restriction (IUGR) and increased neonatal morbidity. Fetal adaptations to placental restriction maintain the growth of key organs, including the heart, but the impact of these adaptations on individual cardiomyocytes is unknown. Placental and hence fetal growth restriction was in...
متن کاملThe impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملFetal responses to placental insufficiency: an update.
Disturbance of normal fetal growth can result in a decrease in weight, or altered body proportion at birth. Fetuses that fail to reach their genetically predetermined growth potential due to intrauterine growth restriction (IUGR) following placental insufficiency are at increased risk for adverse short and long term outcomes that can extend all the way into adult life. Because of its diverse im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 46 9 شماره
صفحات -
تاریخ انتشار 2005